Publié dans Dénombrement, Maths

La dizaine, les dizaines

Lorsque le jeune sait dénombrer de 1 à 10, il va pouvoir faire des paquets de 10. Pour le début du dénombrement; vous pouvez aller par là. 
Vous trouverez un autre article qui fait référence au fait de faire des paquets de X items, c’est là.

Faire des ensembles de dix, former une dizaine va permettre ensuite de dénombrer plus facilement et d’organiser son dénombrement.
La manipulation permettra à l’enfant de comprendre. Sans manipulation des unités qui deviendront une dizaine, l’élève pourra retenir « par cœur » que le grand bâton orange « c’est 10 » mais au moindre changement de représentation ou à la moindre irrégularité, il sera perdu car il n’aura pas compris le principe de « un ensemble » (lot, tour, sachet, plateau, billet, …) = 10 unités.

Trois remarques :
— Il faut donc être patient et faire dénombrer à l’enfant beaucoup de grosses collections et ne pas passer trop vite à des représentations groupées de la dizaine.
—  Contrairement à ce qui est recommandé dans la plupart des méthodes et pédagogies en mathématiques : on ne noie pas dans du langage avec des enfants avec autisme !! On se tait et on laisse le jeune observer. On utilise des mots-clefs qu’il connait (pareil / différent) et on ne blablate pas « tu vois là c’est 10, c’est pareil que 2 fois 5 blabla… »
— On manipule et on n’utilise pas de fichier de maths papier avant que la notion soit bien comprise !

Par rapport à l’écriture chiffrée.

Maria Montessori a popularisé la représentation des nombres avec des plaquettes superposables. Il s’agit de bien différencier les unités des dizaines des centaines des milliers.
Par exemple, ci-dessous, pour écrire douze, on ne met pas un 1 et un 2 (ce qui ferait 3) mais un carton de 10 où on placera sur le zéro le chiffre 2 des unités. On a donc douze qui est égale à 10 unités + 2 unités.

Ces plaquettes sont souvent vendues avec le matériel Montessori et sont en général en bois (pour pouvoir faire le fameux « magie du nombre ») mais on en trouve facilement sur le net à imprimer.
Attention, pour rester dans la pédagogie Montessori, il faut respecter le code couleur vert/bleu/rouge car ces couleurs serviront ensuite pour les unités de mille, etc.
Il existe également les tables de Seguin, bien intéressantes dans cette même idée de codage de 10 et d’un certain nombre d’unité(s), puis de 20 et des unités, …

Remarque : attention aux nombres de 11 à 16
Ces nombres ont un statut spécial : onze, douze, treize, quatorze, quinze et seize sont des chiffres dont la dénomination n’est pas logique. Après seize, les nombres sont transparents dans le sens où dans « dix-sept », on entend le 10 et le 7 et idem pour les nombres jusque « dix-neuf ». Ensuite, on a 20 et ça reprend jusqu’à 29 eeeetttttt 30 et on continue.
Il y a donc un passage un peu compliqué avec les nombres de 11 à 16 qui sont à connaitre par cœur.

 

Les échanges et les manipulations

L’objectif est que 10 devienne 1 ensemble plus rapide et plus économique à former que de prendre 10 petites unités une par une.
Par exemple, il est plus facile de percevoir qu’il y a 25 unités ci-dessous lorsqu’on a 2 barres de 10 et 5 unités plutôt que lorsqu’on a 25 unités blanches.

Ci-dessous, exemple avec des bâtonnets de glace (à 0.47 centimes les 100 bâtons chez action, il faut en acheter 2 paquets pour être tranquille!)

Je fais faire des paquets de 10 bâtonnets et on met un élastique autour. Le fait que ce soit lui qui les compte encre bien dans sa tête qu’il y a 10 bâtons dans chaque fagot.

Ci-après, on est avec des Connectors (de chez Action également) et on les met par paquet de 10.
On voit que l’enfant met bien 20 Connectors (2 paquets de 10) dans chaque case de boite à compter :

Manipuler, manipuler, manipuler … en alternant des quantités avec et sans dizaine :

L’utilisation d’un dé (avec des nombres de face variables selon le niveau de l’enfant) peut apporter un peu de fun et de changement pour des activités dénombrements :

Les équivalences : le début du calcul

Ci-dessous, on reprend le tapis de comparaison que j’utilise bien avant les histoire de mathématiques afin que l’enfant comprenne qu’on recherche un même (qu’il soit strictement identique ou semblable).  Normalement, le jeune connait la forme de cet exercice : on met de chaque coté des « trucs qui seront pareils ».

Différence entre comptage-dénombrement et calcul :
Avec les « comptages-dénombrement » et « les comptage-numérotage » (voir l’article ici) on égrène les quantités, on ajoute ou retire un par un les unités.
Dans le « calcul » : on va utiliser une stratégie de décomposition-recomposition qui va faire trouver un résultat. Ce n’est ni à force de compter-numéroter, ni à force de répéter que le calcul mental apparait.

Cette équivalence est la plus fréquente. L’enfant dénombre et met le résultat en écriture-chiffrée en face.
En général, cette équivalence-là est également beaucoup travaillée.

Dix connectors en vrac = 1 lot de 10 connectors ensemble.

Mais il y aura d’autres types d’équivalences :

Les réglettes cuisenaires permettent également de faire des comparaisons de quantités en les associant :

Dix, c’est aussi cinq et encore cinq.

 

Le matériel pour manipuler : lequel choisir ?

Rappel quant au dénombrement

Pour parvenir à dénombrer, il faut que l’enfant puisse mettre en œuvre plusieurs compétences simultanément. Pour les enfants avec autisme, les difficultés peuvent être multiples mais d’expérience, ce qui pose le plus problème est l’adéquation unique et le principe d’abstraction. (Les 5 principes du dénombrement (Gelman).)

Au début, pas le choix, on va dénombrer des grandes quantités, au delà de 10. Le jeune va « ressentir » que c’est loonnnnnnnnnggg.
Ce qui me semble important dans un premier temps est de pouvoir bénéficier de dizaines qui soient « vérifiables » : que l’on puisse, au besoin, recompter qu’il y ait bien 10 unités à l’intérieur.

Voici un petit récapitulatif de ce que j’utilise au cabinet.
Changer de matériel permet évidemment de généraliser mais également, cela permet de moins se lasser : c’est donc très important.

 

Il y a du matériel dans le commerce, spécialement conçu pour ce travail de numération et de codage de la dizaine :

Ten-Trays (de chez Learning Resources)
Les cubes Mathlinks (de chez Learning Resources)
La Banque de chez Montessori
Numérano (de chez Nathan)
Picbille (de chez Retz)
Argent factice que vous pourrez trouver par exemple sur  Tout pour le jeu.
Les réglettes Cuisenaire.
La Base 10, que vous trouverez sur Tout pour le jeu.

Il y a du matériel que l’on peut détourner ou fabriquer soi-même :

Plaquette de 10 points rouges, fabriquée « maison »+ unités.
Lots de 10 Connectors (vendus chez action à 4€) + unités.
Tour de 10 Légo-Duplos+ unités.
Barrette de 10 perles à repasser + unités.
Sachet de 10 marrons + unités.
Fagot élastiqué de 10 stylos + unités.
Sachet de 10 os (de P’tits Malins de chez Ludo&Méninges) + unités.
Fagot de 10 bâtonnets de bois + unités. (Magasin Action 0,47 € les 100)

Vous pourrez maintenir l’enseignement avec des exercices sur papier :

Pour la notion de « faire des paquets de X », vous pouvez aller dans l’article dédié ici.

Former des dizaines avec des tampons en remplissant des casiers de 10 :

Ou encore, fabriquez des tampons de 10 et de 1 pour que l’élève manipule les dizaines sur papier :

Enfin, une version papier avec des dizaines faites de différentes façons :

Travail de construction de la dizaine avec des représentations en « barrettes Montessori » :
Afin que l’élève comprenne que « la dizaine » est un tout qui a un statut particulier, je fais apparaitre la barrette de 10 en grisée.

Il va être intéressant de voir comment votre élève dénombre les éléments.
Par exemple, avec l’enfant ci-dessous, il dénombrait les perles une par une et n’utilisait pas la dizaine en tant que lot global. Du coup, au lieu de le laisser pointer un par un les perles avec son stylo velleda, je l’ai guidé en main sur main pour faire une glissade en trait en verbalisant« diiiiiiix » puis « onze », « douze » en pointant une an une les unités.

Là, il avait compris l’idée et du coup, il a enchaîné en arrêtant de dénombrer une par une les perles de la barrette de 10.


Travail de construction de la dizaine avec des représentations en « plaquette de 10 » :

Cela correspond au « ten trays » que j’utilise beaucoup en manipulation avec les enfants au cabinet. Un article entier sur les Ten-Trays se trouve ici.
Voici donc la version papier avec des jetons libres et des lots de 10 jetons qui apparaissent toujours rangés en plateau de 10. Le fait que les jetons soient « libres » quand ils sont inférieurs à 10 rend le dénombrement plus facile visuellement.

Une version avec des jetons rangés dans des plateaux même lorsqu’ils ne sont pas par 10, c’est ici :

Dans le PDF ci-dessous, j’ai dessiné des crayons dans une boite bien ouverte, ceci afin que l’élève puisse toujours tout recompter 1 à 1 les éléments en cas de doute.

Vous trouverez ci-dessous la même chose mais codé en Picbille :

Puis, ensuite, voici la continuité de ce travail mais cette fois codé en Lubienska ; avec des centaines et des milles (Ok c’est bien plus complexe mais je le mets là faute d’avoir un autre endroit plus pertinent!)

Et voilà !

Publié dans Comparaison, Dénombrement, Enseignements et apprentissages, Maths, Mesure, Visuo-spatial

Grand comme … X centimètres !

Au delà de calculs savants, ce qui va nous intéresser ici c’est le coté fonctionnel de la mesure. Mesurer c’est pouvoir s’entendre plus ou moins précisément sur une taille : « c’est grand/petit comment? »

Donc, avant même de commencer à mesurer, il faut que l’enfant ait une approximation de taille en tête/vue : par exemple, qu’il puisse trier des bâtons de 4 cm et d’autres de 10 cm sans avoir besoin d’outils pour les mesurer. Il verra que ce bâton-là ressemble à celui-là car il est « long pareil » / « court pareil ».

 

Savoir trier à l’œil des tailles, approximativement, sans se tromper

La première étape est que l’élève ait conscience qu’il existe plusieurs tailles et que les objets sont classables selon ce critère. Avant de passer à la mesure en tant que telle, il faut que l’enfant soit capable de faire des approximations de taille sans avoir besoin d’outil de mesure. Les outils viendront aider  lorsque les différences deviennent moins perceptibles à l’œil ou lorsqu’il sera utile d’avoir une mesure précise de quelque chose.

Des exercices de tris en classification de tailles comme ci-dessous vont nous permettre de voir si l’enfant a cette conscience et si il est en mesure de percevoir les différences de tailles entre les différentes versions d’un même item. On peut le faire avec de vrais objets comme des poupées gigognes ou gobelets à sérier :

Avec ce type de matériel, il est possible de voir si l’enfant est capable de les emboiter correctement uniquement en regardant, à l’œil (avant même de tester physiquement si ça passe ou non).

et ensuite avec des images comme dans l’exercice ci-dessous : le PDF est ici.

 

Les réglettes Cuisenaires et les centimètres :

Il s’agit d’un matériel pédagogique inventé par Georges Cuisenaires et qui sert à la base à la compréhension du nombre. Dans cet article, je les détourne pour les mesures en centimètres mais ce n’est pas du tout sa fonction à la base. Vous trouverez de nombreuses informations sur des sites pédagogiques à propos de son utilisation : dans les calculs, les compléments, les décompositions de nombres mais aussi les multiplications, les divisions, … C’est un matériel très intéressant pour l’autisme car c’est très visuel : le matériel concret aide à ensuite calculer en abstraction.

Il s’agit de petits tronçons de bois de 1cm de coté qui mesurent 1 cm (blanc), 2 cm (rouge), 3 cm (vert clair), … jusqu’à 10 cm (orange) (j’ai des 11 cm qui sont gris mais je ne sais pas d’où ils sortent …).

D’autres exercices comme ceux ci-dessous peuvent nous éclairer quant au fait d’avoir plus ou moins le compas dans l’œil : par exemple dans ces gabarits de réglettes Cuisenaires.
Dans l’emplacement vide sur l’image ci-dessous, l’enfant devra à priori s’orienter vers un marron (ou un proche de cette taille-là comme le bleu ou le orange) mais ne devrait normalement pas s’orienter vers un petit vert ou un petit rose!

Ci-dessous, on a deux gabarits identiques à gauche et à droite. C’est intéressant de demander à l’enfant de faire le premier, puis, de lui demander de remplir aussi mais en faisant différemment de ce qu’il a déjà fait à gauche.
On peut remplir le même espace avec des réglettes différentes : par exemple dans les emplacements verticaux, on a à gauche : 2 jaunes+ 1 blanc + un vert et à droite : 1 gris + 1 rouge.

Les réglettes Cuisenaires ont deux avantages :

  • une réglette sera toujours exprimée avec valeur entière : il n’y aura pas de millimètres, les réglettes mesurent 1 cm, ou 2 cm, ou 3 cm, … ce qui est bien pratique !
  • une réglette représente la mesure de façon très tangible et met l’accent sur le fait que 1 cm soit une « distance » et non un résultat, un chiffre. Ainsi, « 1 cm » c’est « de zéro jusqu’à 1 » et ce n’est pas le chiffre « 1 » sur la règle. Ca, c’est vraiment la difficulté que je rencontre avec les enfants que j’accompagne !

ATTENTION : il y a évidement un effet d’apprentissage : plus l’enfant les mesure plus il va apprendre par cœur les valeurs en fonction des couleurs. Quand ce sera le cas, l’enfant ne s’entrainera plus à la mesurer mais ces réglettes serviront à d’autres enseignements : le calcul et toute sorte de manipulations de quantités (comprendre la multiplication / division notamment).

Au début, vous pourrez proposer à l’enfant de mesurer chaque réglette séparément : c’est facile à mesurer car les réglettes se manipulent aisément et se calent bien le long d’une règle. Il faudra « juste » guider l’enfant afin qu’il comprenne que pour mesurer, il faut aligner le bord de la réglette sur le zéro de la règle.

Comme expliqué plus haut, les réglettes sont colorées en fonction de leurs tailles et les enfants connaitront par cœur leurs valeurs assez rapidement. Ce n’est pas un problème : cela va justement nous permettre de repérer si l’enfant a compris, si il est capable d’inférer une taille et ensuite, cela permettra d’anticiper des mesures de combinaisons de plusieurs tailles et permettra l’abstraction du nombre.

Voici des tableaux de mesures pour vos élèves, comme dans le PDF ci-dessous :

Puis, on pourra lui faire combiner plusieurs réglettes : « une réglette orange (10 cm) alignée avec une réglette jaune (5 cm) mesureront EN TOUT 15 cm.
Ci-dessous, on voit l’enfant qui aligne les réglettes sur le zéro le long de la règle (on a un jaune et un blanc donc : 5 cm + 1 cm).

C’est ça, la magie des réglettes 😉

 

Manipulation de pâte à modeler pour apprendre à mesurer des tailles précises sur demande.

Ici, j’utilise de la pâte à modeler mais on pourra le faire avec des bandes de papier, tissu, ficelles, etc, …
Dans les paragraphes ci-dessus, l’enfant devait mesurer des objets déjà existants. Là, l’enfant doit produire des items d’une certaine dimension.

Atelier pâte à modeler :
Je fais ou fais faire à l’enfant des boudins très très longs (grâce à une seringue ou une presse) afin qu’il les découpe ensuite :

Je demande à l’enfant de couper « pareil que le jaune », « grand comme le orange », … ensuite je reprends sa production et mélanges ses tronçons pour ensuite qu’il les appaire de nouveaux avec les réglettes Cuisenaires. Je préfère utiliser d’abord les réglettes Cuisenaires car je veux que les enfants comprennent que « 10 cm » c’est une distance de 0 cm à 10 cm et non un nombre tout seul.

 

Ensuite, comme on est plus familier avec les centimètres depuis quelques semaines, on se sépare des Cuisenaires et on utilise que les centimètres.

Il a découpé seul les rouleaux de boudins en tronçons selon les consignes écrites que j’avais données (les étiquettes qu’on voit à gauche de la photo).

L’enfant est capable de réassocier les petites étiquettes 23 cm, 8 cm, 14 cm et 4 cm :

Ici, il a d’ailleurs tout réassocié « à l’œil ». Il a juste vérifié le 8 cm qui était juste !

Celui-là, il n’est pas forcément à faire (c’était pour un enfant en particulier, mais je le mets quand-même) car les centimètres sont « grossis » :

Mesure de papier dans la BàC : https://www.autismenjeux.fr/wp-content/uploads/2024/05/BaC-mesure-regle-taille-en-Cm.pdf

Voici un PDF qui permet différents exercices :
– Si vous voulez que l’enfant trace le segment, vous donnez l’indication en centimètre et
– Si vous voulez que l’enfant mesure, vous tracez des segments et il devra inscrire la taille du segment en cm.

Sur la page 1, il y a une ombre qui permet à l’enfant de tracer droit mais si vous pensez que ce n’est pas un problème, dans ce cas, imprimez la page 2 et travailler directement sans faire l’exercice de la page 1.

Là, j’écris la mesure « 10 cm » et l’enfant doit tracer un segment de 10 cm avec la règle. L’ombre grise derrière sert de guidance pour le tracé.

 

Attribuer les unités de mesure aux bons outils : merci à Sandrine pour ce support !

Autres supports sur les champs lexicaux de ces unités : ici (à suivre)

Vous trouverez de nombreux supports sur les pesées, la lecture de l’heure, les euros en tapant les mots clefs dans le moteur de recherche.
D’autres PDF seront ajoutés petit à petit !

Prendre des mesures à plat, puis en relief

Mesurer du linge de maison : gant de toilette, serviette, lingette microfibre, …

Il s’agit ici de présenter de vrais objets à l’élève et de le faire mesurer.


A plat, en général, cela ne pose pas de problème : l’élève comprend rapidement et relève les côtes en centimètre en reportant sur le schéma.

Mesurer des objets en relief : des boites, des plats, des meubles, …

C’est à ce moment là qu’on voit des difficulté apparaitre. Il faut que le jeune puisse comprendre le relief sur le dessin ET il faut que l’enfant puisse positionner son outil de mesure aux bons endroits sur les objets pour relever les bonnes mesures …
J’utilise ce que j’ai le plus dans le cabinet : des boites de jeux! Pour le coup, il y en a de toutes les tailles !!

Voici un PDF vierge qui vous permettra de faire des activités autour des mesures :


Puis, des formes un peu plus complexes : des plats à four !

 

On commence par les comparer « à l’œil » : le plus grand, le plus haut, …

Oui, sans mesurer, on voit que celui là est plus grand !
On commence par mesurer la longueur, comme c’est une mesure à prendre à plat, c’est assez habituel.
Quant à la mesure de la hauteur, malgré le schéma, le jeune ne comprenait pas du coup comment placer sa règle : je l’ai guidé. Il a ensuite reporté ses mesures sur la feuille d’exercice.

Voici un PDF afin de travailler sur les mesures : dimensions de plats.
Ce PDF permet des activités de comparaison du type : « quel est le plat le plus haut?, quel est le plus large parmi ces trois là?, …)

(D’autres PDF plus complexes arrivent, avec des meubles, mais il faut que je termine les dessins)

Publié dans Dénombrement, flexibilité cognitive, Maths, Planification, Vie quotidienne

Faire un inventaire : le dénombrement s’organise

J’aime beaucoup cette activité car c’est rendre utile des compétences souvent enseignées de façon isolée.
Faire un inventaire, c’est dénombrer mais c’est surtout s’organiser pour et dans ce dénombrement. Donc, fonctions exécutives à fond : planification, anticipation, flexibilité, inhibition, maintien attentionnel, etc !

Cette compétence fait partie des « basiques » demandés en ateliers pour les jeunes avec handicap, mais c’est également une compétence qui peut s’avérer fonctionnelle pour « checker » une liste d’aliments disponibles dans un frigo, un ensemble d’affaires de piscine prêt dans un sac ou encore un lot de vêtements préparés dans une valise (en il y a/ il n’y a pas ou en quantités).

Cet enseignement concerne les enfants qui savent compter jusqu’à 30 (mais pas forcément plus) et qui savent interpréter un tableau à double-entrée. Vous trouverez beaucoup d’activités pour entrainer le tableau cartésien sur ce site (cf moteur de recherche).
Cet article sera complété petit à petit en fonction des besoins des jeunes que j’accompagne !

Les premières étapes

Dans ce PDF (attention, il a été complété le 16/06/24) : vous pourrez imprimer les pages qui vous intéressent selon le matériel dont vous disposez : pingouins de Learning Resources (40€), Connectors de chez Action (3€) ou Maillons de chaine (30€ en Learning Resources ou 3€ chez Temu), ou pinces à linge, ou pompons, ou bouchons en plastique, …

La première étape donc va consister à dénombrer méthodiquement, ligne par ligne, selon la couleur.

Au début, il va s’agir de comptabiliser un seul type d’items. Mieux vaut utiliser des vrais objets : c’est plus fonctionnel et plus agréable pour les enfants qui pourront s’organiser dans leur activité. Si cela vous semble accessible à l’enfant, on pourra lui faire utiliser la calculatrice afin qu’il fasse le total. En général, l’utilisation de la calculatrice en fin de dénombrement pour obtenir la somme totale est très motivante!

Attention, il va être important à cette étape de gérer la quantité « zéro » quand il n’y a pas la couleur représentée. Cette étape est primordiale afin de ne pas fausser les résultats. Il faudra que l’intervenant présente à l’enfant des opportunités de côter « 0 » dans sa grille d’inventaire ! En général, lorsqu’un enfant est confronté à l’absence d’une couleur, il s’arrête et attend. Il faudra lui apprendre à gérer cet écueil en écrivant « 0 » à la ligne correspondante.

La difficulté de l’exercice pourra être modulée en fonction de la présentation de l’exercice. Si on donne une seule page d’inventaire, qu’il n’y a qu’un seul type d’items et que les items sont déjà pré-triés (par couleurs par exemple), l’exercice sera facilité.

Si il s’agit encore d’un inventaire à un seul type d’items, mais qu’on laisse l’enfant trier lui-même (par couleurs, comme ci-dessous), l’exercice sera déjà plus complexe. Dénombrer et s’organiser pour le dénombrement représentent 2 TACHES et non plus une seule et cela multiplie donc la difficulté!

Ici, l’enfant a trié lui-même les pingouins pour pouvoir les dénombrer. C’est une organisation nécessaire avant de pouvoir dénombrer afin de limiter les risques d’erreurs. Avant l’enseignement, cet enfant dénombrait directement dans la caisse sans extraire les pingouins et donc, il les comptait ad vitam aeternam … ;-p

Ensuite, on pourra donner au jeune deux inventaires présentés en même temps, mais sur deux pages différentes avec 2 caisses contenant chacune des items (ici : une caisse de connectors et une autre caisse de pingouins). L’enfant devra quand même trier par couleurs pour chaque type d’item.

L’étape d’après sera de tout mélanger dans une même caisse: l’enfant devra trier par items et par couleurs (ou l’inverse si il est plus à l’aise!) : trier les items (les connectors d’un cote et les pingouins de l’autre) et ensuite retrier chaque groupe par couleurs.

Ensuite, on pourra prendre un inventaire-double avec des connectors et des pingouins sur la même fiche d’inventaire. Il faudra que l’enfant soit à l’aise avec le tableau à double-entrée encore en plus !

Sur la photo ci-dessous, vous pouvez voir un enfant s’organiser autour des quantités en grammes. Il doit mesurer combien de grammes de perles il y a dans la boite A, dans la boite B, etc. Il doit ouvrir les contenants, verser dans un autre contenant pour faire la tare, noter la quantité en gramme qui est inscrite sur la balance, remettre les perles dans le tupperware qui ferme et remiser la boite pour en prendre une autre.
Evidemment, l’enfant doit être à l’aise avec les pesées pour faire cet inventaire, sinon, le multitâche sera ingérable !

Il a voulu également écrire également la quantité de perles sur chaque boite.

 

Une seconde étape va être de pouvoir « jongler » dans l’interprétation de ces chiffres

Ces tableaux vont nous permettre également de mettre du sens sur des mots mathématiques et de rendre concrètes des formules telles que :
– combien en tout / au total ?
– combien de pingouins rouges ? combien de maillons rouges? combien de rouges en tout (donc pingouins + maillons) ?
– combien de pingouins au total ? combien de maillons au total ?

Généralisation de la compétence

Vous pourrez trouver d’autres inventaires dans cet article consacré aux Playmobil. ATTENTION, ce sont des inventaires plus complexes que ci-dessus!

Il sera question de répertorier les Playmo par leur couleur de cheveux (noir, blond, roux, brun) ou leur âge (bébé, enfant ou adulte) mais aussi, avec des propositions négatives : le fait de porter une jupe ou non, d’être une femme ou non, …

Exemple d’inventaire par couleurs de tenues en bas : il faudra que l’enfant tolère de compter une jupe bleue avec un pantalon bleu dans la même catégorie des « bas bleus ». Ceci pose particulièrement problème pour les jeunes avec autisme !

Suite à ces exercices, on pourra travailler sur des mesures plus complexes comme des lots d’items (5 boites de 12 feutres) ou de l’argent (4 pièces de 2€, 5 billets de 20€, … avec le total d’argent en tout).
Tasolutionautisme propose un PDF bien sympa sur les inventaires (8€) qui peut être une bonne suite à ces exercices pratiques !

Inventaire nourriture

Ci-dessous, vous pouvez voir quelques extraits où on aperçoit la progression crescendo jusqu’à des inventaires de plus en plus complexes. Ce sont 54 fiches « digestes » qui peuvent donc être présentées une par une chaque jour afin de travailler petit à petit sans dégouter le jeune.

Publié dans Dénombrement, Maths, Motricité fine, Pince pouce-index

Les maillons de chaîne

Ces petits maillons sont un matériel que l’on retrouve souvent dans les salles de classe ou les institutions. Comme ils sont vendus « seuls », sans consignes ni supports pédagogiques, il faut créer soi-même les consignes et donc, ils sont souvent remisés dans un placard. Enfin, chez moi, c’était comme ca jusqu’à ce que je dessine des maillons et crée ces PDF ce week-end !

Un PDF avec des exercices un peu de tous les niveaux : de la simple association de couleur avec un seul maillons coloré, jusqu’au dénombrement !

 

Motricité : séparer et assembler les maillons

Il n’est pas évident d’assembler des maillons. Mieux vaut commencer au début par les détacher : on donne une petite chaine à l’enfant et il doit les séparer pour les trier par couleur, par exemple, comme sur la photo ci-dessous.

Dénombrement : compter les maillons

Dénombrer des petites quantités de maillons, avec modèle visuel ou avec quantités chiffrées (dans des Boîtes à Compter) :

   

Fabrication de chainettes à trois maillons (dans des Boîtes à Compter) :

Le PDF est ici.

 

Dénombrer les maillons et les attacher ensemble

Voici un ajout avec un dénombrement « simple » de maillons à accrocher : (cliquer sur l’image pour avoir le PDF)

(PDF compatible avec les « links » de chez Learning resources)

D’un point de vue pratique : imprimez le PDF puis découpez les étiquettes. Ensuite, disposez-les avec des espaces afin que le plastique colle bien. En effet, comme ces étiquettes seront manipulées et maltraitées pour être enfilées dans les maillons, elles risquent de se dégradées rapidement si vous ne laissez pas une petite bordure de plastique lors de la plastification.
Ensuite, faites un trou avec une plastifieuse à l’endroit du petit cercle gris.

 

Compléter les maillons qui manquent

Il s’agit de compléter les maillons manquants dans la couleur demandée pour arriver à la somme écrite en noir. L’idée est de faire comme dans l’exercice ci-dessus (c’est pour cette raison que j’ai repris scrupuleusement la même charte graphique) mais avec des contraintes supplémentaires de couleurs …

Ci-dessous, l’enfant doit en mettre 10 en tout : il commence par un violet et doit compléter avec 9 bleus.

   

 

Coder les maillons en C, D, U : centaine, dizaine et unité :

Ci-dessous, il va s’agir de coder un nombre en maillons de couleurs. (Ajout du 15/08/24)
Si vous n’avez pas les mêmes couleurs que moi (je sais que certains ont des lots avec du rouge et non du orange) vous pouvez recolorier, AVANT de plastifier, les maillons oranges au feutre rouge afin d’être raccord avec la couleur de vos maillons à vous.

Cette série de cartelettes a été faite pour travailler autour des notions de centaines, dizaines et unités.
On peut demander à l’enfant de mettre les maillons correspondants mais également, on peut lui demander de mettre ensemble des étiquettes et des chainettes déjà formées ! Bref, que du bonheur ! 😉

Publié dans Compréhension, Dénombrement, Fonctions exécutives, Langage, Logique, Maths, Mémoire de travail

Des supports sur le thème de Pâques

Tout comme pour la période de Noel, voici des activités autour du thème de Pâques. Chaque année, j’ajouterai des petits supports pédagogiques pour varier.

Compréhension écrite ou orale :

Comprendre la négation

Avec un seul œuf, puis plusieurs.
Une affirmation est donnée, il faut cocher si c’est vrai ou faux en regardant l’illustration à droite.

Pour aller plus loin

Si vous pensez que c’est facile pour votre élève, vous pouvez faire comme pour le support des sapins de Noel : vous pouvez imprimer, plier verticalement sur la ligne du milieu et coller. Ensuite, vous découpez et plastifiez pour obtenir une activité qui travaillera les fonctions exécutives

L’objectif ici est de solliciter la mémoire de travail : prêter attention à ce qu’on lit, le maintenir et cocher la bonne réponse.

Présentez à l’enfant la carte côté consigne : il doit lire, retourner la carte et cocher vrai ou faux.
Attention, quand l’enfant lit, il ne faut pas reformuler (sinon on évalue sa compréhension orale) il faut le laisser se débrouiller avec ce qu’il a lu.

Dénombrement de 1 à 6 œufs :

A imprimer en A4 ou en 2 pages par feuille pour un format plus petit.
Vous pouvez au choix, mettre un velcro à l’endroit indiqué ou bien laisser l’espace vierge pour que l’enfant écrive. Si vous avez plusieurs élèves, je vous conseille de mettre une boulette de Patafix pour pouvoir soit faire coller des étiquettes, soit faire écrire l’enfant avec un crayon woody.

En fonction des étiquettes disponibles, vous pourrez faire varier la difficulté.

Pour le PDF, cliquer sur l’image :

Joyeuses Pâques à tous !  😉

Publié dans Adaptations et critiques de jeux, Aide à la création de supports, Calcul, Dénombrement, Matériel générique, Maths

Les dés à 60 faces et les dés doubles.

Les dés sont souvent appréciés des enfants et il en existe tellement que quelque soit l’objectif, on trouve souvent une façon de l’exploiter de façon rigolote.
De plus, les dés sont quand même des produits bon marché et avec peu de matériel autour, on peut créer des jeux bien sympas.

Au début, je voulais ajouter un paragraphe dans mon article sur le lancé des dés (que vous pouvez lire ici) mais finalement, il existe tellement de petites activités sympas autour de ce gros dé que j’ai décidé d’en faire un article complet ! J’ajouterai au fur et à mesure des idées …

Dé 60 faces, image de chez Tout pour le Jeu
Dé 60 faces, image de chez Tout pour le Jeu

Vous trouverez une énorme collection de dés en tous genres chez Tout pour le Jeu (petite entreprise familiale bien sympa vers Pontarlier) notamment des dés avec 60 faces (ici) ou encore avec 100 faces (ici). Evidemment, il y a toute sorte de dés disponibles à partir de 3 faces, bien pratiques même pour les jeux « standards » quand un enfant ne peut dénombrer au-delà …

 

Voici quelques idées en vrac autour des dés

L’idée est de choisir un dé qui corresponde aux possibilités de l’enfant : sur les photos ci-après, en fonction des enfants, j’utilise des dés différents.

— tout simplement lancer le dé et lire l’écriture chiffrée à haute voix : on peut faire chacun son tour et cela permet de travailler même avec des petites quantités, avec des constellations ou des écritures chiffrées. La photo ci-dessous montre 2 dés avec des représentations différentes : on peut demander à l’enfant de lire le dé, de dire ou d’écrire le résultat en fonction de son niveau :

Ici, deux dés à trois faces : à gauche un dé en écriture chiffrée et à droite un avec des constellations.
Ici, deux dés à trois faces : à gauche un dé en écriture chiffrée et à droite un avec des constellations.

— lire l’écriture chiffrée et la réécrire sur un document  : (voir le PDF)
sur la photo ci-dessous, le dé a une écriture chiffrée, l’enfant pourra donc recopier scrupuleusement en écriture chiffrée ( = « copie » dans les opérants). En prenant un dé avec des constellations (par exemple un dé de 1 à 6) ce sera plus complexe pour l’enfant car la forme diffère entre deux points sur un dé qu’il pourra observer et l’écriture « 2 » qu’il devra produire. C’est donc plus difficile.

Ici, il s'agit d'un dé de 20 faces avec écriture chiffrée
Ici, il s’agit d’un dé de 20 faces avec écriture chiffrée

— écrire en lettres le chiffre lu en écriture chiffrée sur le dé : avec ou sans référentiel (voir le PDF)

— tirer chacun son tour et faire une bataille en gagnant si on a le plus grand nombre.
On gagne des éléments (pingouins, marrons, jetons, connectors, …) et celui qui en obtient 10 a gagné!

— avec un tampon à bingo : rechercher sur la grille de 1 à 60 le nombre tiré et le tamponner. (voir le PDF)

 

En créant un autre dé à marquer avec une face Velléda (sur ce site à 50 cts!) ou éventuellement avec un dé sur lequel vous collerez des gommettes :

 

Pour travailler les dizaines et les unités :

— 3 faces avec « dizaines » et 3 faces avec « unités » à coupler avec un dé de 60 ou de 100 faces, comme ci-dessous

Avec le dé et 60 faces : on tombe sur "56" et "unité" donc on doit dire/écrire "6 unités"
Avec le dé et 60 faces : on tombe sur « 56 » et « unité » donc on doit dire/écrire « 6 unités »

 

Avec le dé et 100 faces : on tombe sur "93" et "dizaines" donc on doit dire/écrire "9 dizaines"
Avec le dé et 100 faces : on tombe sur « 93 » et « dizaines » donc on doit dire/écrire « 9 dizaines »

Pour travailler la représentation du nombre avec différents matériels :

Toujours le même principe de lancer un dé (Dé à 20 faces , ou 60 faces, ou 100 faces selon les enfants) et on doit coder la quantité en barrettes montessori, en boîtes picbilles, en ten-trays, ou en Lubienska :

Ici, on a "73" : on code en barrettes Montessori avec 7X10 et 1X3 perles.
Ici, on a « 73 » : on code en « barrettes Montessori » avec 7X10 et 1X3 perles.

 

Ici, on a "73" : on code en ten trays avec 1 plaque de dizaine et 3 unités vertes.
Ici, on a « 13 » : on code en « ten trays » avec 1 plaque de dizaine et 3 unités vertes.

 

Ici, on a "46" : on code en Picbilles avec 4 boîtes orange et 6 unités (dont 5 cachées)
Ici, on a « 46 » : on code en « Picbilles » avec 4 boîtes orange et 6 unités (dont 5 cachées).

On peut également utiliser le dé pour former des sommes en euros, et s’habituer aux formats disponibles (il y a des pièces de 1€, de 2€ mais pas de pièce de 3€ !) .C’est beaucoup plus rigolo que de faire des exercices sur papier où il faut redessiner des pièces devant une somme écrite !

Ici, on a "83" : on code en Euros avec 3 billets et 2 pièces.
Ici, on a « 83 » : on code en Euros avec 3 billets et 2 pièces.

 

— décomposer une nombre : on tire le nombre 58 : on doit écrire 10 + 10 + 10 + 10 + 10 + 8

— le début de 60 avec un autre dé Velléda : on écrit 3 faces avec « AVANT » et 3 faces avec « APRES » et on lance : on doit dire à haute voix le plus rapidement possible le nombre d’avant où d’après.  Par exemple pour 58 ; on doit dire « 57 » si on a tiré « avant ».

Ici, il faut vite dire (ou écrire) le nombre avant 20, donc "19"!
Ici, il faut vite dire (ou écrire) le nombre avant 20, donc « 19 »!

 

— idem avec un dé : +10 ou -10 ou -1 ou + 1 ou -20 ou + 20 et on doit donner le résultat à haute voix!

 

Dé avec un autre dedans !

   

 

  • un dé et un autre avec intérieur et extérieur et on doit attraper le plus rapidement
  • idem mais avec le petit et le grand
  • les additionner
  • les multiplier
  • trouver le plus grand nombre parmi les deux et si ils sont ex-aequo, attraper le plus vite possible le dé !

 

Dé à jouer triple avec 3 mini dés à l’intérieur :

  • simplement additionner les 3 petits dés rouges.
  • les trier du plus petit au plus grand (prévoir feuille pour écrire)
  • flexibilité mentale et inhibition : dire le plus petit et si deux sont ex-aequo, dire le plus grand!

 

Tous ces exemples vous donnent une liste non-exhaustive d’idées pour exploiter les dés à grands nombres. Notez surtout qu’il existe pléthore de dés : vous pourrez vous adapter à vos élèves !!
Les PDF de cet article sont tous regroupés dans ce PDF, vous imprimerez les pages que vous souhaitez.

Ici, j’ai plus traité les mathématiques mais vous pouvez travailler aussi du vocabulaire, du Français, de la conjugaison et bien d’autres choses !!

Publié dans Adaptations et critiques de jeux, Calcul, Dénombrement, Maths, Visuo-spatial

Bluff Dice

Un jeu en vente dans les magasins ACTION, il contient 6 gobelets de couleurs différentes et 5 dés de chaque couleur : orange, bleu, rose, rouge, vert et jaune.
C’est un jeu de Bluff à la base. Je déteste ça. Mais je trouve intéressant ce matériel pour moins de 3€.
Voici quelques idées pour l’exploiter !
         Peut être une image de aliment et intérieur

Tri de couleurs pour les petits!

(cela correspond au Niveau 1 jalon 2 et niv2, jalon7 PVA du VBmapp par exemple)
Selon la difficulté désirée, on peut mettre 2 à 6 couleurs de gobelets à trier.
Peut être une image de intérieur

Reproduire une tour de gobelets en ordonnant les couleurs selon un modèle en 2D.

C’est une sorte de préparation au jeu « Crazy Cups » de chez Gigamic.
Vous pouvez imprimer mes dessins de gobelets en cliquant sur l’image ci-dessous.
Dans le PDF, il y a des modèles de 2 à 6 gobelets selon la difficulté recherchée.
Peut être une image de texte qui dit ’Bluff Dice game Grafix- adaptation 3 AUTISMENJEUX AUTISMENJEUX AUTISMENJEUX AUTISMENJEUX AUTISMENJEUX AUTISMENJEUX’

Concentration sur la couleur ET la valeur du dé : le double-critère.

 

C’est le dernier PDF que j’ai fait sur la base de ce jeu :
Pour commencer : tous de la même couleur ou tous de la même valeur sera plus facile.
L’enfant devra prendre la bonne couleur de dé, puis manipuler en tournant dans ses doigts chaque dé pour trouver la bonne valeur et poser le dé à l’endroit qu’il faut sur le « tapis de jeu ».
Puis, on pourra augmenter en difficulté en variant les couleurs ET les valeurs, puis en prenant les cartes-défis où les valeurs sont exprimées non plus en constellations de dé mais en écriture chiffrée !!! Là, la connaissance de la correspondance est obligatoire alors que précédemment, l’enfant pouvait faire en reconnaissance terme à terme purement visuelle.
Au maximum de la difficulté, on peut ôter le petit tapis de jeu afin que l’enfant fasse sa séquence directement sur la table.
Il y a possibilité également de travailler de petit exercice de mémoire, on montre la carte à l’enfant, on lui retire et il doit se remémorer les couleurs et les valeurs de chaque dé.

Et plein d’autres possibilités encore …

On peut inventer un petit jeu du type :
On lance 1 dé de chaque couleur et on doit attraper le plus vite possible le gobelet de la couleur dont la valeur du dé est la plus grande. Si il y a un nombre impair d’étoile ou un doublon, on inverse, on doit attraper la valeur la plus petite et ainsi de suite. Ainsi, on travaille les fonctions exécutives!
Jeu de mémorisation et d’emplacements :
On lance 3 dés de couleur différente, on cache chacun sous le gobelet correspondant à sa couleur. On doit ensuite, de mémoire, dire quelle valeur est sous quel gobelet.
Et vous? Vous avez des idées?
Publié dans Adaptations et critiques de jeux, Aide à la création de supports, Dénombrement, Matériel générique, Maths, Visuo-spatial

Les « connectors » fleurs, de chez ACTION

Découverte en me baladant dans les rayons chez Action : les « connectors » : des sortes de fleurs qui s’encastrent les unes dans les autres pour former des constructions en relief.

Le matériel se présente en un seau de 400 fleurs, de 11 couleurs différentes : violet, bleu clair, bleu foncé, vert clair, vert foncé, rouge, jaune, orange, blanc, noir, et marron. La répartition a l’air a peu près équitable dans mon pot … j’avoue, je n’ai pas compté la quantité disponible de chaque couleur.
(Désolée Jess, il n’y a pas de rose!)

Chez Action ; 3,99€ (mars 2023)
Chez Action ; 3,99€ (mars 2023)

Pleins de possibilités pour plein de cibles différentes

Evidemment, à la base, ces fleurs sont faites pour être emboîtées afin de fabriquer des constructions en 2D et 3D.
Cependant, j’aime surtout le fait que ce soit une base de travail : les possibilités sont infinies et ce dans des domaines bien différents, y compris en verbal (voir à la fin de l’article)
Voici donc quelques idées d’activités, quelque soit le niveau de votre élève !

 

En motricité pure, (pré-requis nécessaire pour les constructions qui vont suivre) :

  • vous assemblez des fleurs et l’enfant doit simplement les déboiter et les remettre dans le pot
  • vous demandez à l’enfant d’assembler des fleurs pour former une grande ligne unie (en lui donnant un exemple)
  • vous demandez à l’enfant de former une fleur : un connector au centre et les autres autour (la prise ne sera pas la même que pour former une ligne)

 

En visuospatial, à plat, en 2D et en 3D:

  • Reproduction à plat : poser à plat côte à côte des connectors. On perd la fonction même de « connecter » mais les enfants avec handicap moteur pourront quand même faire des activités avec et créer de jolies choses à plat.
  • Reproduction d’un même pattern à répéter à l’identique dans des boîtes (ou une BàC) du type ; [un blanc et un bleu] dans chaque boîte. On augmente ensuite le nombre de connectors et/ou on les associe avec d’autres petits matériels (jetons, pingouins, pompons, dés, etc, …)
  • Reproduction de patterns assemblés très simples, avec un modèle en réel puis en photo/image, avec un connector de chaque couleur à assembler, puis 3 à assembler en ligne en respectant bien un ordre avec une couleur spécifique au centre. Une maîtresse, Carole, a créé ces modèles à reproduire.
  • Reproduction de patterns assemblés plus complexes, avec un modèle en réel puis en photo/image, voire des modèles super complexes comme ceux que vous trouverez gratuitement sur le net (en tapant « Brain Flakes » dans un moteur de recherche)
  • Imaginer une construction soi-même, …

En mathématiques :

  • Faire des algorithmes : 1/1,    1/1/1, ou encore 2/1,   2/2, … (voir photos ci-après)
  • Avec le fichier ci-après, dénombrer et mettre la bonne quantité,
  • Sans le fichier, on peut mieux visualiser les termes des additions ; 2 (bleus) + 3 (rouges) = 5
  • Idem pour les multiplications : 5 lots de 2 connectors emboîtés  = 5X2 = 10 connectors.

Et encore pleins d’autres compétences à travailler avec le PDF ci-après !

 

Idées d’exploitations du PDF pour la BàC : quantités de 1 à 3

Le PDF est ICI

Voici donc des fiches pour les BàC, difficulté croissante, afin de passer de l’appariement terme à terme au dénombrement, tout doucement.
La variabilité des fiches vous permettra d’identifier où l’enfant est en difficulté : parfois (souvent), avec les enfants avec autisme, on a des surprises !! vous pourrez donc travailler cet écueil plus intensément en l’isolant.
Par exemple, la tolérance : que l’enfant accepte de mettre des couleurs différentes dans la même case. Cela parait complètement étonnant mais souvent, le problème n’est pas le dénombrement mais d’accepter de mettre des connectors différents ensemble. Nos enfants ont naturellement cette tendance, mais les trèèèèèès nombreuses activités de tris renforcent cette façon de trier qui leur parait être la seule possible. Le travail sur cette rigidité cognitive va donc être nécessaire …

 

Petite remarque : la différence de tons entre jaune/orange et entre les deux verts est subtile, pour être sûr que l’enfant discrimine bien les deux teintes, vous pouvez lui faire trier en deux tas distincts :

 

  • Faire des tris de couleurs :

  • Apparier un connector de la même couleur :

  • Dénombrer des connectors, couleur identique :

  • Apparier des connectors, un seul de chaque couleur mais de couleurs différentes et superposés :

  • Dénombrement jusqu’à 3 mais couleurs différentes inter-cases :

  • Dénombrement jusqu’à 3 mais couleurs différentes INTRA -cases :

  • Apparier un chiffre arabe (1 à 3) et une couleur à un connector :

  • Apparier une constellation de dé (1 à 3) et une couleur à un connector :

 

 

Les fiches sont triées par ordre croissant de difficulté « mathématique », mais :

Vous pouvez faire varier la difficulté en présentant différemment à l’enfant les fleurs à placer : lui donner le compte juste, lui pré-trier par couleurs, lui mettre à disposition devant lui ou bien avec une distance qu’il devra parcourir entre la réserve et la BàC, ou bien lui faire demander ce dont il a besoin et c’est vous qui donnez, etc, …
Tout est possible mais il faut être conscient que cela impacte sur la complexité de l’exercice (planification, mémoire de travail, anticipation, …) et que selon cette présentation, vous ne travaillerez pas les mêmes cibles (dénombrement, demandes, mémoire de travail, etc, … )

Les fiches ici sont faites pour être mises dans une BàC de chez Nathan. Si vous n’en avez pas, vous pouvez poser sur la table, mais dans la mesure où il s’agit de matériel à manipuler, à fortiori pour les petits ou les enfants en difficulté, ce sera plus pratique dans des petites boîtes distinctes.

Selon le niveau de l’élève, choisissez les pages à imprimer. Si vous avez un doute, commencez toujours par présenter un peu plus facile pour que l’enfant soit à l’aise et apprécie le matériel …
Si vous avez des remarques / conseils sur ce pdf, vous pouvez m’écrire, je pourrai compléter / corriger si besoin.

Suite du pdf : quantités après 3

La suite est ici

Ce pdf vous permettra de travailler la dizaine. Pour ce faire, il faudra regrouper les connectors avec un élastique par paquets de 10. Les enfants comprendront rapidement qu’il est moins couteux de prendre directement un petit paquet plutôt que de recompter tous les connectors un par un.

 

Fabrication des fiches, (pour cette activité mais cela est valable pour toutes les fiches de BàC de ce site) :

Imprimez, pliez en deux la page sur la ligne du milieu afin d’obtenir une fiche recto-verso sur un papier doublé et collez-les. Votre fiche sera plus rigide. Coupez l’excédentaire le long des lignes pour obtenir une fiche de la bonne taille pour l’insérer dans la fente de la BàC.
Vous pouvez plastifier (ou non) les fiches obtenues lorsqu’elles sont pliées en deux et ainsi mettre 2 fiches (donc 4 faces d’exercice) dans la même pochette de plastification.

 

Reproduction de modèles et algorithmes

Voici un tout dernier fichier pour travailler ces notions de reproductions. Les deux activités sont sur le même PDF.

 

Si vous avez des idées d’exploitation de ce jeu, je peux vous envoyer les fichiers de mes dessins ou vous aider afin de créer de nouvelles possibilités.
J’aime l’idée de pouvoir profiter de petits basiques peu chers, accessibles à tous ! 😉

Ca c'est pour d'ici quelques semaines ! ;-)
Ca c’est pour d’ici quelques semaines ! 😉
Publié dans Dénombrement, Fonctions exécutives, Maths, Motricité fine, Planification, Pré-graphisme, Visuo-spatial

Faire des paquets de …

J’adore ces exercices où il faut faire des petits groupes de X éléments. Toujours le même nombre d’éléments dans chacun des groupes.
Je le travaille assez tôt avec les enfants, dans un sens ou dans l’autre, c’est-à-dire, soit il entoure des jetons, soit il y a déjà des cercles et l’élève doit placer le bon nombre de jetons dedans.

En manipulation …

L’enfant place X éléments dans des ensembles

  • Ensembles très délimités : c’est-à-dire des boîtes, boîtes à compter. Les ensembles sont bien délimités grâce aux différents contenants que l’on choisira si possible strictement identiques.
  • Ensembles peu délimités : des cercles tracés sur du papier ou sur une ardoise. L’enfant devra placer X éléments dans chaque cercle. C’est beaucoup plus abstrait qu’une boîte et cela peut donc poser quelques problèmes. Si l’enfant a l’habitude de le faire dans des boîtes, il devrait néanmoins surmonter la difficulté facilement en transposant aux cercles en 2D.

L’enfant entoure pour former des ensembles de X éléments

Cette fois-ci, c’est l’inverse : on place des éléments sur une ardoise où l’enfant doit entourer les éléments par petits lots …. Si votre enfant est un peu maladroit, c’est quand même souvent le cas, utilisez des aimants (tous semblables!!!) afin qu’ils restent bien en place lorsque l’apprenant tracera autour des ensembles.

Travailler cet exercice en manipulation est particulièrement intéressant car il va nous permettre de faire une guidance environnementale (voir chapitre sur les guidance ici) en disposant les éléments de façon à induire des paquets de X éléments. Ensuite, on regroupera de façon à ne plus induire des paquets voire même de façon à rendre l’exercice beaucoup plus complexe.

Exercices sur papier : de l’addition réitérée à la multiplication…

Comprendre que : paquet = groupe = ensemble  = tas = …. va être obligatoire avant d’aborder la notion de multiplication.

On va donc entraîner l’enfant avec ce vocabulaire afin qu’il soit bien à l’aise pour ensuite l’aborder dans les exercices de mathématiques.

J’ai fait un PDF pour entourer par paquets / lots / groupes :

Faire des paquets, sans clef excédentaire
Faire des paquets, sans clef excédentaire

Cette série de « fais des paquets de … » peut être utilisée aussi bien avec les petits qu’avec les plus grands.
L’objectif est de dénombrer et de faire des paquets, évidement, mais pas seulement …

Attention : Entourer n’est pas si facile que cela : il faut faire attention à le faire « logiquement » c’est-à-dire sans s’auto-coincer en faisant des formes de paquets génératrices d’erreurs ultérieures. Si faire des paquets pose un problème, il faut lui faire faire l’exercice du fichier « entourer des formes enchevêtrées » pour le travailler séparément.
Par exemple, dans les exemples ci-dessous, la première page est facile avec des paquets qui se détachent et sur la seconde, il va falloir faire des formes biscornues pour entourer certaines formes et pas d’autres.

En découverte de l’addition : l’enfant va tout simplement compter en barrant les éléments. Si il ne le fait pas dès le début, c’est important qu’il commence à barrer à partir de 3 ou 4 éléments afin de se familiariser avec la stratégie qui sera presque obligatoire par la suite dans les grands nombres. Il est important que l’enfant apprenne à faire des groupes afin de manipuler un dénombrement plus efficient. Il permettra de comprendre la dizaine, d’où les nombreux exercices de « paquets de 10 » dans ce fichier.

A cet effet, j’ai fait ce même fichier mais avec des « restes », sans respecter les multiples. Cela permet d’introduire le fait qu’il n’y ait pas forcément une quantité exacte pour que tous les éléments soient entourés et qu’il peut y avoir des « restes » (- notion mathématique très importante).

En découverte de la multiplication : l’enfant va faire des paquets, mais ensuite, il devra verbaliser « il y a X paquets de Y éléments » de façon à se familiariser avec l’idée d’ensemble. Cela permettra de mieux comprendre l’addition réitérée et l’intérêt de multiplier pour gagner du temps. Il est préférable d’utiliser le fichier avec les « sans reste » pour travailler les multiplications.

Remarque pour imprimer : Imprimez les pages qui vous semblent utiles. Je recommande d’imprimer avec l’option « plusieurs pages par feuille » (2 ou 4 suivant les capacités ergo de l’enfant). Je travaille régulièrement en 4 pages par feuille, ce qui permet rapidement de mettre ces exercices dans la Boîte à Enchainements une fois bien acquis.

Faire des paquets, avec des serpents "en trop"
Faire des paquets, avec des serpents « en trop »

Voici deux versions en fonction des apprenants :

 

Puis, faire des paquets et écrire la somme :

 
Pour les enfants pour lesquels il est difficile d’écrire, je vous conseille de préparer des petites étiquettes (celles sur la photo ci-après sont les gommettes de chez action coupées en deux) sur lesquelles vous écrirez des nombres que l’enfant n’aura plus qu’à coller. L’exercice sera quand même complexe si vous mettez beaucoup de choix dans les étiquettes.


Travail autour de la dizaine

Il faudra beaucoup d’exercices de manipulations où on regroupe en paquets de 10 des éléments variés (voir les nombreux autres articles consacrés sur ce site) avant que l’enfant ne comprenne l’utilite de la dizaine. Pensez surtout à varier vos « lots de 10 » afin que l’enfant comprenne le concept au delà du matériel utilisé. Ci-dessous, des photos de différents matériels ….

Article complet dédié ici !

Publié dans Aide à la création de supports, Calcul, Dénombrement, Matériel générique, Maths

Les perles montessori : la réalisation des barrettes

Ahhhhh depuis le temps …..

Comme il y a énormément à dire, je vais scinder les articles abordant Montessori en unités plus petites.
Je rédigerai un article sur la philosophie, les plus et les moins avec les enfants autistes ou présentant un handicap particulier.

Ici, je voulais m’atteler à une partie très factuelle : la réalisation des barrettes pour la numération.

Quelques mots

En quelques mots, j’ai été séduite par le coté visuel de ces mathématiques : à l’instar de picbille, lubienska ou d’autres, ce matériel permet de « voir concrètement » les quantités, de les saisir, de les peser, de pouvoir prendre conscience qu’il y en a vraiment beaucoup ou vraiment peu. Et j’aime l’idée de varier ces différentes représentations du nombre.
Le fait qu’une couleur corresponde à une quantité est je trouve sympa car c’est finalement la même logique que de l’appeler arbitrairement « huit » ou « deux » … ce sont des façons de se les représenter et de les faire exister dans notre tête d’une autre façon.

Au niveau matériel

Personnellement, j’ai choisi de les faire moi-même. Alors si vous n’aimez pas les travaux manuels un peu répétitifs, un conseil, achetez-les déjà en barrettes!
Moi, j’ai opté pour réaliser mes barrettes montessori en DIY  :-), il m’a donc fallu :

  • un ensemble de perles: je les ai acheté chez l’Atelier Montessori : j’ai commandé un ensemble de 10 escaliers, le kit du serpent négatif et une banque de 2500 perles.
  • un fil acier : j’ai opté pour du 0.7 de chez Leroy merlin, j’avais essayé le 1mm mais pour mes mains, je trouvais ca trop dur. Le 0.7 forcement se tord plus facilement que le 1.00 mais je ne regrette pas mon choix.
  • une voire deux pinces : il en faut une pour couper et une pour tordre. Celle pour tordre, vous avez le choix entre deux esthétiques différentes :
    • soit une pince classique qui a un embout triangulaire, qui créera donc des boucles … triangulaires
    • soit une pince faite exprès, qui formera des boucles rondes :
      • une pour les colliers et bijoux avec des embouts ronds (souvent vendue par les revendeurs montessori), environ 10/15€
      • une pour le bricolage, dite à bec rond (pince circlip) : perso c’est celle que j’ai utilisée et qui est en photo ci-dessous en bleu, Leroy Merlin (Dexter, pince sans protection électrique : 7,50€.)

 

Procédé de fabrication

Pour gagner du temps, mieux vaut avoir une belle organisation.
Commencez par les barrettes longues car les petites sont plus complexes à réaliser, mieux vaut être plus entrainé.

Mes boucles sont assez grosses car j’ai préféré me mettre en butée de la pince afin d’avoir des boucles toujours de la même taille. Mais si vous le sentez, évidement, vous pouvez réaliser votre boucle à mi-hauteur du bec de pince et ainsi obtenir des boucles plus petites.
Ensuite, afin d’aller plus vite, je me suis faite un gabarit, boucle comprise pour avoir plus de précision en fin de tâche. Il ne me restait plus qu’à couper mon fil et hop hop hop enchainer et enchainer et enchainer et … 😉 bon, ok, c’était un peu long …

Afin d’avoir une belle courbure de boucle, personnellement, la technique la plus facile et la moins aléatoire a été de plier l’extrémité de mon fil de fer une fois les perles enfilées. Déjà, ca me bloquait mes perles pour faire mes boucles à la chaîne par petites séries, et en plus, ca amorçait la courbe du début de la boucle.

Comme j’ai eu environ 3000 perles à mettre en barrettes de 10, j’ai aussi utilisé ma main d’œuvre non volontaire pour m’aider. Une façon de bien faire rentrer dans la tête des enfants que les oranges, ce sont les dizaines et il y a 10 perles sur la barrette orange!!. Je pense que dans 30 ans, ils s’en souviendront encore ! Bon, merci Z., T., A. ou encore A.

Les enfants devaient mettre les 10 perles sur ma barrette déjà bouclée et les poser verticalement dans un récipient pour que je les boucle ensuite et les finisse. Un joli travail à la chaine.

 

Quelques activités autour des barrettes

 

 

Au début, je les couple avec du tri, comme d’habitude  🙂 avec des BàC (mises côte à côte)

La compréhension de la dizaine:

Avec le système d’échange et la possibilité de prendre une barrette de 10 plutôt que de dénombrer une à une chaque perle pour former 10.
La banque montessori unie (en général, elle est jaune) est très pratique pour cette étape car il n’y a plus de codage couleurs.

« La banque Montessori » : avec des unités, des dizaines, des centaines et des milliers.


Des exercices papiers Montessori se trouvent sur le site. Tapez « montessori » dans le moteur de recherche pour les trouver.

ATTENTION : pensez vraiment à varier les types de dizaines !! comme dans les exemples ci-dessous :

Les additions :

Savoir associer différentes quantités ou plusieurs fois la même avec des additions réitérées (préparation aux multiplications).
Pour manipuler les barrettes pour additionner des quantités, il existe des sites bien faits qui montrent le fonctionnement, je ne le ferai donc pas ici.

     

Les multiplications :

Voici un PDF pour comprendre la différence entre 3×4 et 4×3. Certes, le résultat sera le même mais avoir 3 paquets de 30 chips est différent de 30 paquets de 3 chips !
En pédagogie Montessori, il y a un matériel spécial pour travailler sur la multiplication. Cependant, j’aime utiliser les barrettes de cette façon pour que les enfants comprennent le caractère économique de la multiplication comparée à l’addition réitérée.

On commence avec ce PDF avec pour mission de différencier les additions et les multiplication-additions réitérées.
Je commence souvent par faire trier en deux paquets les opérations : les additions et les multiplications afin que l’enfant soit attentif au sens du signe.

 

Dans ce PDF là (à venir), il faudra plier le document sur la ligne centrale de façon à obtenir un recto-verso. Ainsi, l’enfant pourra lire une écriture chiffrée, comme : « 3X4 » et devra prendre les barrettes adéquates pour former cette opération puis, il retourne sa carte pour vérifier sa production.
On peut également travailler de l’autre côté en présentant le dessin à l’enfant, il doit écrire l’opération chiffrée et hop, on retourne pour vérifier si c’est juste!

                               

 

Voici un autre PDF : il va s’agir de scratcher la bonne opération devant la bonne configuration. Tout l’enjeu ici est de faire la différence entre 3X4 et 4X3 par exemple.

              

 

Quand l’enfant a compris ce qu’est une multiplication, il va falloir connaître les résultats par cœur pour gagner en rapidité : voici donc des documents d’entraînement !

Les tables de multiplication de 1 à 10 avec illustrations Montessori :

D’autres exercices seront ajoutés au fur et à mesure des besoins des enfants que j’accompagne.
Grâce au compte FB autismenjeux, vous pourrez être informé(e) des éventuels ajouts !

Publié dans Adaptations et critiques de jeux, Comparaison, Dénombrement, flexibilité cognitive, Fonctions exécutives, Logique, Maths, Planification

La caravane

C’est un jeu de chez Cit’inspir, relativement récent qui permet de travailler le vocabulaire autour des mathématiques. Il permet de travailler isolément chaque notion, afin de favoriser à terme la compréhension de problèmes mathématiques « traditionnels » plus complexes.
Ce jeu coûte une cinquantaine d’euros, est composé de 13 petits livrets, de 40 chameaux ( 10 de chaque couleur : rouge, bleu, jaune et vert), d’une image de décor pour placer les chameaux et de petits diamants en plastique de couleur (que personnellement je n’utilise jamais).

Remarque : la trousse et la pochette ne sont pas incluses, je les ai cousues pour ne pas abîmer le matériel lors des déplacements.

Le principe et le matériel …

 

Il va s’agir de réaliser des situations-problèmes par la manipulation des petits chameaux en bois. Normalement, l’enfant doit réaliser son exercice sur l’image décor de l’oasis, mais c’est trop difficile pour les enfants dont je m’occupe. Pour la plupart, il est nécessaire d’aménager un peu dans un premier temps, ce que je vais développer ci-dessous.

Il y a 13 livrets, dont la difficulté augmente petit à petit. Ils sont divisés en 3 niveaux comprenant chacun 5 exercices. Au dos de chaque exercice, on trouve la/les réponse(s) possible(s).

Ils abordent chacun une notion mathématique différente :

– livret 1 : cardinalité,
– livret 2 : ordinalité,
– livret 3 : autant,
– livret 4 : de plus que,
– livret 5 : de moins que,
– livret 6 : de plus que … de moins que,
– livret 7 : fois plus,
– livret 8 : fois moins,
– livret 9 : écriture fractionnaire,
– livret 10 : au plus,
– livret 11 : au moins,
– livret 12 : multiples (double, triple, quadruple),
– livret 13 : parmi/ dont.

 

                                                    

Plus concrètement …

 

Vous pouvez travailler les premiers niveaux avec des enfants même en début d’apprentissage de la numération, lorsqu’ils savent dénombrer jusqu’à 10. 

Ci-dessous, voici des exemples d’exercices du 1er livret, celui sur la cardinalité (le dénombrement). On voit un exercice du niveau introduction, du niveau 1 et du niveau 2. On voit la difficulté croissante :
– niveau d’introduction est épuré : peu de termes, simple. On prend contact avec le matériel …
– niveau 1 : le nombre total est donné et la quantité de chaque chameau est reprise, il « suffit » de suivre.
– niveau 2 : le nombre total de chameaux et les couleurs nécessaires apparaissent, il va falloir inférer. Dans l’exemple ci-dessous : 2 bleus, 1 vert et 1 qui n’est pas rouge, donc qui est de la quatrième couleur non mentionnée dans la consigne : jaune. C’est là que les hostilités commencent !!  😉

 

Il y aura évidement des exercices avec le nombre total de chameaux et où il faudra inférer la quantité nécessaire dans la dernière couleur mentionnée, ainsi que d’autres où il faudra inférer couleur et quantité nécessaires, etc, … 

Afin de rendre l’exercice moins couteux pour les enfants que j’accompagne, lorsque je commence l’enseignement, je n’utilise pas l’oasis mais une bande avec des silhouettes de chameaux. Ainsi, si il faut 5 chameaux en tout, on prend la bande avec les 5 silhouettes, si il y en a 8, on prend celle de 8 chameaux, etc, … Déjà, ça permet de comprendre qu’il faut compléter, trouver des manquants, et ensuite, les enfants peuvent se passer de cette bande en les plaçant sur l’image oasis (moins aidante mais plus ludique ! ).

Lorsque je présente le livret à l’enfant, je mets également un cache sur la réponse de l’exercice d’avant, sinon, les pauvres, risquent de complètement s’embrouiller avec des indices erronés. (voir les photos ci-dessous)

Voici, un exercice du niveau 1 et un exercice du niveau 2 du livret sur l’ordinalité (c’est à dire placer des items dans un ordre indiqué). Tout comme le livret antérieur, des inférences vont apparaitre au fur et à mesure … Il va falloir se familiariser avec les mots « premier », « dernier », « avant dernier », etc, … et ne pas louper des indices avec des informations groupées (« les deux derniers », « les autres », « le 2ème et le 4ème sont … », « le 5ème est vert, comme le dernier », etc, …

   

Les livrets d’après sont réalisés sur ce même modèle, avec des reprises d’informations antérieures et des références à d’autres données.

Je trouve ce matériel vraiment super : il est ludique, avec une difficulté croissante, avec chaque notion abordée isolément. 
Il permet également aux pros de vérifier la bonne connaissance des termes mathématiques du petit patient : il est inutile de tenter de faire résoudre un problème scolaire traditionnel à l’enfant si ces thèmes lexicaux ne sont pas maîtrisés!

Publié dans Aide à la création de supports, Calcul, Dénombrement, Lexique - vocabulaire, Maths

« Beaucoup et peu » jusqu’au « plus et moins »

Souvent dans l’enseignement des mathématiques avec les enfants en difficulté, on va trop vite …

Avant tout apprentissage des chiffres et des nombres, je travaille la notion de « beaucoup » et « peu », puis de « plus » et de « moins ».

Ces notions sont primordiales en mathématiques mais aussi, évidement, dans la vie quotidienne !

 

Au commencement …

Toujours commencer par de la manipulation. Les supports imagés sont bien pratiques mais doivent être réservés à l’évaluation (voir si un enfant sait ou non) ou à la généralisation et l’abstraction de la notion déjà acquise.

Évidemment, en début d’enseignement, on commence par comparer deux quantités très différentes : on met très très peu et vraiment beaucoup dans deux bols, bols idéalement identiques afin que la comparaison ne se fasse que sur le contenu du bol.

Dès le départ, il faut penser à présenter à l’enfant des quantités dénombrables (par exemple 3 billes dans un bol et 20 dans un autre, 5 cotons-tiges dans un bol, 20 dans un autre, ) mais également de l’indénombrable (une cuillère à café de riz et un bol rempli de riz dans l’autre bol, un verre de sirop presque vide et un verre presque rempli,…)
Par expérience, les enfants comprennent mieux au départ par de l’indénombrable. Surtout pour ceux à qui on a présenté la numération avant, lorsqu’on présente des exercices de « peu versus beaucoup », les enfants ont tendance à dire « y’a trois » si il y a 3 billes … car ils ont été conditionnés  à la réponse quantité.

"Donne beaucoup"
« Donne beaucoup »

Concrètement …

Vous présentez donc deux bols identiques et vous demandez «montre/donne beaucoup » et vous guidez directement l’enfant vers le bon endroit.
Attention : il ne faut pas laisser l’enfant tâtonner en essai-erreur au risque qu’il apprenne ses erreurs et qu’il s’embrouille.
Comme chaque fois qu’un enfant doit apprendre une notion inconnue, on l’oriente pour qu’il ait directement la bonne réponse.

Pour l’enseignement de deux opposés, comme ici, on doit travailler les deux notions conjointement assez rapidement.
On reste un moment sur un seul terme (par exemple « beaucoup ») puis on introduit l’autre (le « peu ») dès que le premier terme commence à émerger. C’est important que l’enfant comprenne à ÉCOUTER la consigne car évidemment, au bout de nombreux essais à toujours vous donner «beaucoup», il va falloir qu’il se concentre pour écouter et se dire que selon ce qu’on lui demande, il ne faut pas toujours donner le même.
Là encore, plus la flexibilité cognitive sera bonne, plus l’enfant parviendra rapidement à comprendre l’alternance.

 

Puis, en images …

On peut ensuite continuer en présentant des supports illustrés. Vous pouvez vous servir de ces pdf.
Le second fichier présente des illustrations plus compliqués, avec des pièges cognitifs. Suite à la remarque d’une copine orthophoniste, j’ai refait des dessins avec des quantités qui occupaient l’espace différemment : par exemple des « peu » qui occupent plein de place et des « beaucoup » qui au contraire sont très peu étalés. Ceci afin que l’enfant ne couple pas la notion de beaucoup et peu avec l’occupation de l’espace dans un endroit donné.

Peu beaucoup moins plus -PDF

Beaucoup__Peu___Répartitions_Trompeuses

Moins et plus …

Une fois que l’enseignement « peu / beaucoup » est ok, on va introduire le «moins / plus » comme étant une extension de ces premières notions.
Je me suis aperçue que de cette façon, les enfants comprennent bien. Car ces deux notions sont finalement assez proches, « moins/ plus » apportant juste une notion de relativité supplémentaire.

Je présente donc à l’enfant deux récipients avec des quantités très différentes, comme on a fait avec « peu/ beaucoup » et je dis « donne moins» en guidant toujours immédiatement pour ne pas que l’enfant se trompe. Souvent le lien se fait entre peu et moins et entre beaucoup et plus.

 

Ordonner …

Ordonner n’est pas une compétence facile pour les enfants avec handicap.
Il va s’agir de mettre en ordre croissant ou décroissant des éléments : des quantités, des tailles oui, mais aussi des intensités, des séquences d’action, etc.

Je vous conseille de commencer par les tailles, car c’est, de fait, très visuel.
Voici un PDF (ici), adapté aux Boîtes à compter mais vous pouvez l’utiliser sans, évidemment. Il y a des tri à faire par taille mais aussi des chiffres à ordonner.

Ici, avec une fiche qui montre (des bulles) du plus petit au plus grand :

 

 

Ici, sans fiche et avec une consigne orale « tu mets du plus grand au plus petit », puis dans support physique, directement sur le bureau : « tu mets du plus petit au plus grand »

Enfin, voici deux derniers pdf avec des variations de quantités (cliquer sur les images pour télécharger le pdf) :

     

 

Pour la suite de cet article, je vous invite à aller par là

Publié dans Dénombrement, Maths, Outils d'autonomie, Visuo-spatial

Des cartes à compter

Il en existe beaucoup sur le net, c’est un support simple d’accès et qui permet de laisser l’enfant travailler seul.

Qu’est-ce que c’est?

Il s’agit de cartes avec 3 propositions sur le bas : on dénombre une certaine quantité sur la grande image et on choisit une réponse dans les propositions en bas.

Attention : ces cartes ne sont pas pour enseigner à l’enfant mais pour qu’il maintienne ses acquis, c’est-à-dire, qu’il s’auto-interroge sur ce qu’il connait déjà.
En effet, la présence des 3 propositions va embrouiller un enfant qui ne serait pas certain de sa réponse et il est toujours préférable de travailler les quantités avec des outils tangibles plutôt qu’en images en début d’apprentissage.

Comment donner sa réponse ?

Au choix, on peut sélectionner la bonne réponse de différentes manières : faire mettre une pince à linge (si au niveau motricité c’est complètement acquis par l’enfant), entourer avec un crayon Woody, poser un jeton transparent, …
Remarque : il est important que le jeton soit transparent car on veut sélectionner une réponse : celle qui est sous le jeton. Si les jetons sont opaques, ils vont cacher la réponse et non la sélectionner!

Je fabrique moi-même régulièrement des cartes à compter pour les enfants que je suis (certaines sont disponibles à imprimer sur ce site).
Souvent je reprends leurs intérêts afin de pairer le « travail d’école » avec quelque chose que l’enfant aime. On peut donc utiliser des personnages de dessins animés, des photos de leurs doudous, des illustrations d’items préférés, …

Comme j’ai pu l’expliquer antérieurement dans un article, j’aime beaucoup le manuel « Picbille » pour la compréhension de la numération avec les enfants avec autisme. C’est moins attirant qu’un personnage de dessin animé, certes, mais ça permet de généraliser les réglettes Picbilles à d’autres types de supports et permet de travailler les Picbilles en autonomie.

Carte à compter Picbilles de 1 à 10, puis de 30 à 100 :

 

Mais également, le dénombrement de grandes collections (supérieures à 10) et non organisée.
Ces dénombrements longs sont souvent sources de problèmes. L’enfant doit parvenir à élaborer des stratégies : recours aux paquets de 10/ tris visuels/ajouts éventuels de repères extérieurs/… Il est intéressant de voir quelle  stratégie il adopte spontanément afin la renforcer ou au contraire lui présenter une méthode plus efficiente.

Ce dénombrement de collections non organisées est important car dans la vie quotidienne, lorsqu’on doit dénombrer des éléments, ils sont en général en vrac et non présentés bien alignés ou par blocs.

Publié dans Dénombrement, Maths

Caillou : quelques supports basiques sur ce thème

Un nouvel enfant que je vais suivre adooooore Caillou : voici donc quelques supports qui peuvent intéresser certains autres difficiles à motiver.

Discrimination visuelle

Une activité de discrimination visuelle qui demande un peu d’attention car il s’agit toujours du même personnage Caillou, ou Clémentine : il faut donc être attentif à ce qu’ils font.
Le support est calibré pour qu’à l’impression tout soit de la bonne dimension pour le mettre dans une Boîte à Compter (voir ici si vous ne connaissez pas).

Dans le PDF, il y a également des distracteurs : des images de Caillou qui ne sont pas à associer car ne figurent pas sur le support à apparier. Vous pouvez les ajouter ensuite pour augmenter la difficulté mais ne les proposez pas au début de l’enseignement.

 

Petits dénombrements simples, en subitizing

Et maintenant, début de la numération avec Gilbert, le chat de Caillou. 
Il s’agit toujours de supports pour la BàC (pages 2 et 4) mais vous pouvez tout imprimer et faire faire l’exercice en mettant en face ou à côté si, honte à vous, vous ne disposez pas encore d’une Boîte à Compter! 😉

L’enfant ne sait pas compter du tout, et bien commençons :

Dans un premier temps, je vous conseille d’imprimer uniquement la page 1, de prendre 2 boîtes ou 2 pots, et faire du tri : on met les collections de « 1 chat » dans une boîte et les collections de « 2 chats » dans l’autre. Même un enfant qui ne sait pas compter perçoit qu’il y a une différence entre les deux situations (chat seul VS groupe de 2).

Lorsque l’enfant arrive à bien trier, c’est là que vous allez associer le verbal en oralisant : « 1 chat » ou « 2 chats » selon la carte qu’il est en train de ranger (verbaliser au moment où il la met dans la boite et non au moment où il la saisit), puis ne verbaliser que « un » et « deux ».  Normalement, si c’est bien introduit, l’enfant devrait aussi verbaliser « un » ou « deux » rapidement, sans se tromper.

Ensuite, vous pouvez imprimer la page 2 du PDF et faire les exercices : associer la carte avec 2 chats en face de là où il y a deux chats, etc, …
Puis, faire mettre 2 jetons (ou 2 perles ou 2 graines, …) quand il y a 2 chats et 1 jeton quand il n’y en a qu’un. Cette étape est évidement plus difficile que celle de mettre la carte avec la collection toute faite de 1 ou deux chats déjà placés. SURTOUT, on dit « un » et « deux » mais on n’égraine pas « un, deux » quand on verbalise « deux ». NE PAS VERBALISER EN DECOMPOSANT !! c’est souvent cela qui embrouille les enfants. On pourra le faire bien plus tard et pour les quantités au delà de 3.

Pour la page 3 et 4, on imprime, on fait du tri dans trois boîtes comme ci-dessus. Il va y avoir des confusions entre les collections de 2 et celles de 3, c’est normal car c’est ressemblant visuellement.

Et ensuite on met la planche de la page 4 dans la boîte à compter et on dit à l’enfant de mettre  » pareil » / « la même chose » / « autant » (= ce dernier terme est rarement compris, donc on commence avec les deux autres). Là encore, comme au dessus, pour trois, on dit « oui, trois » et non « un, deux, trois ». Il doit percevoir la quantité trois comme une photo (c’est ce qu’on appelle « le subitizing ») et il ne faut pas saboter cette perception en verbalisant « alors tu vois mon chéri, il y a un, et pis deux, et pis trois chats …  » au risque qu’il ne comprenne plus rien.

 

 

Enfin, dernier petit support de Caillou : les collections de 1 à 3 avec le fait de pouvoir associer des quantités à des écritures chiffrées.
Et oui, cela nous parait évident mais pour un enfant il n’y a aucune correspondance entre la quantité de trois et ce signe « 3 ». C’est donc à apprendre par cœur à force d’associations.

Mieux vaut présenter ce support lorsque l’enfant a déjà un peu connaissance des écritures chiffrées. Pourquoi? parce qu’en dessous de chaque collection, il y a les trois valeurs « 1 / 2 / 3 » à cocher. Selon où se portera son regard, si il ne sait pas encore, il peut apprendre de façon erronée.
Il conviendra donc antérieurement à ce support là, de travailer un appariement « quantité collection de deux » avec « 2 » l’écriture chiffrée. 

Publié dans Aide à la création de supports, Dénombrement, Ecrit, Maths, Motricité fine

La languette des nombres

Des languettes avec une série de 6 nombres, compris entre 1 et 100 avec :
– chiffres arabes avec barres sur les 4 et les 7
– chiffres digitaux : il s’agit des chiffres qui apparaissent sur les anciens réveils/montres (souvent oubliés, ils sont à travailler pour ne pas être confondus, notamment 2 et 5, car ils sont pratiques pour lire l’heure quand la lecture en analogique (les aiguilles avec les horloges) n’est pas (encore) acquise.

Evidemment, on avance dans les nombres au rythme de l’enfant (et en travaillant en parallèle la notion de quantité). 

Ci-après, dans l’article, vous trouverez une feuille à 6 zones / emplacements pour écrire les nombres.


Idées d’exploitation 

 

On écrit, ou on dicte …

Ces languettes peuvent se travailler avec la feuille assortie ci-dessous.
On donne la feuille d’exercice à l’enfant et celui-ci doit écrire les nombres de la languette que nous lui dictons.
On peut également faire l’inverse : l’enfant dicte à l’adulte les nombres de la languette et l’adulte écrit les nombres. Cette version peut être intéressante pour les enfants non scripteurs.
Dans ces cas, on peut entourer l’option choisie (nombres dictés par l’enfant ou par l’adulte) sur la feuille d’exercice.
Enfin, on peut alterner sur les 7 lignes : l’enfant commence à dicter, puis c’est l’adulte qui dicte, puis c’est de nouveau l’enfant. 

 

On apprend à se dépêcher …

En général, quand les enfants sont à l’aise avec les nombres, ils aiment cette activité. Je la couple alors avec une contrainte de temps pour qu’ils apprennent à se dépêcher : je mets un sablier en route et le jeton n’est acquis que si la ligne est remplie avant le temps défini.
Je n’explique rien, je ne dis pas de « si tu finis alors blablabla » car le « si alors » n’est souvent pas du tout acquis avec ces enfants, c’est la contingence : « sablier vide = pas de jeton » qu’ils vont intégrer rapidement. Leur expliquer par une phrase conditionnelle, c’est à coup sûr les perdre.

 

On s’entraîne à ordonner …

Ces languettes peuvent également servir à ordonner les nombres : l’enfant devra alors ré-écrire les 6 nombres dans l’ordre croisant, ou décroissant selon la consigne donnée.

 

Entre deux enfants, en classe …

Vous pouvez aussi faire cette activité avec deux enfants en difficulté dans la classe. Avec une AESH pour superviser, l’enfant A dicte à l’enfant B et pour la ligne d’après, on inverse! Cela permet aux enfants d’être « obligé » d’être en interaction avec l’autre et du coup, de faciliter le recours à l’autre.

 

Pour le côté fabrication

Pour fabriquer le support à languettes des nombres, il vous faut : une plastifieuse, une perforatrice, un anneau à ouvrir en plastique ou un anneau de porte-clef. Et hop, le tour est joué.

Voici les feuilles d’exercice correspondantes :

Publié dans Adaptations et critiques de jeux, Aide à la création de supports, Dénombrement, flexibilité cognitive, Fonctions exécutives, Maths, Motricité fine, Pince pouce-index, Visuo-spatial

Grab game

Un petit jeu trouvé chez Noz à 2,70€ !

Le matériel est tout simple mais j’aime bien le principe : deux dés à combiner (comme Catch it, Candy, Colorama…) :
– un dé couleurs : avec 6 couleurs différentes
– un dé constellations dites organisées : de 1 à 6.

Ce petit jeu est facilement reproductible en faisant un fichier word avec des écritures chiffrées (= chiffres arabes) de couleurs et avec deux dés vierges. Pour les petits, j’utilise de gros cubes qui me servent de dé, comme ceux en bois vendus chez ACTION (voir prochain article sur les astuces de fabrication).

On peut également rendre ce jeu plus accessible en sélectionnant les cartes-chiffres de 1 à 3 et en créant un dé de constellations de 1 à 3 (par exemple en collant des gommettes avec 1, 2 et 3 points sur les constellations 4, 5, et 6) comme ci-dessous:

Publié dans Adaptations et critiques de jeux, Dénombrement, Maths, Motricité fine, Pince pouce-index, Visuo-spatial

Rings Up … attention

Voici Rings’up, de chez Gigamic. Dans l’idée, il mêle motricité, différentiation des mains, observation, rapidité, flexibilité mentale, …

Dans ce jeu, il s’agit de retourner une carte et d’enfiler sur son pouce les anneaux de couleurs comme stipulé sur la carte, le plus rapide gagne cette carte. Et hop, on continue …

Je l’ai depuis un moment, malheureusement, il sert peu.
Je trouve qu’il apporte une confusion entre la cardinalité et l’ordinalité, à moins bien sur de changer les règles du jeu.

Effectivement, il aurait fallu écrire sur les cartes « 1er », « 2ème », « 3ème » et non 1, 2, 3, … Car avec une consigne telle que : 1 [rouge], 3 [jaune], 2 [vert], … induit plus directement une quantité qu’une position sur le pouce.

Je l’utilise néanmoins avec certains enfants une fois la cardinalité bien installée et lorsque l’ordinalité commence. De plus, je verbalise systématiquement : «  le 1er est rouge, le 2ème est … » afin qu’il n’y ait pas de confusion et d’introduire les termes de l’ordinalité.  En général, l’enfant se met à verbaliser spontanément comme moi.

Blue Orange, l’éditeur, ùet à disposition des googides sur son site : on peut donc aller imprimer gratuitement des cartes d’extention du jeu ici.

 

Publié dans Calcul, Comparaison, Dénombrement, Logique, Matériel générique, Maths, Motricité fine, Pince pouce-index, Visuo-spatial

Les penguins on ice, les pingouins sur la banquise !

J’ai la chance d’être très bien entourée : une maman habitant dans le Sud de la France m’a fait livrer ce jeu pour me remercier des conseils pour son fils …. RHHhhoo la belle surprise! Merci, merci, merci !

Un jeu Learning Resources plutôt commercialisé dans les magasins spécialisés éducation et/ou handicap.

Jeu composé de :

_ 100 pingouins, 10 de chaque couleur : rose, bleu, violet, orange, jaune, marron, rouge, vert, noir et blanc.
_ 10 banquises en plastique bleu transparent qui sont connectables sur la longueur ou sur la largeur.
_ un petit mode d’emploi avec quelques idées de mathématiques notamment.

Petits détails importants  : les pingouins sont agréables à toucher et n’ont aucune odeur.

Multitudes de possibles :

Ce set permet de travailler les mathématiques. Il peut également permettre de d’aborder des concepts pré-mathématiques, tels que :
– du tri de couleurs, évidement
– le tri de couleurs complexe : par exemple, ne sélectionner que les noirs, jaunes et les verts. Vous verrez, les enfants peinent énormément !!
– des correspondances terme à terme : en mettant une rangée de pingouins et l’enfant doit reproduire la même rangée en les plaçant dans le même ordre de gauche à droite (il existe pléthore de supports réalisés par des enseignants) (voir l’article ici),
– des complétions de patterns (voir l’article ici)
– des algorithmes : réguliers ou irréguliers, (article à venir)
– du dénombrement dans une BàC avec des pingouins de 1 à 3 : ici
– du dénombrement avec la notion de dizaine (un banquise = 10 pingouins)
– des petites opérations mathématiques posées : « 2 jaunes + 1 bleu = ? »,
– des opérations à inférer, du type : « 3 pingouins sont sur la banquise et un tombe à l’eau. Combien en reste-t-il? »

– …mais aussi des compétences motrices : pour les petits ou les enfants avec troubles moteurs, placer les pingouins sur les picots de la banquise n’est pas évident.
– ainsi que du verbal
– ou la mémoire de travail : auditive, visuelle, …  (un article à ce sujet)

Bref, c’est un matériel basique qui permet de travailler plein de choses!

Merci Lisa, les enfants se régalent!

 

 

Des PDFs gratuits pour créer des exercices

 

Ce matériel m’inspire énormément, il est quand-même vendu assez cher (compte-tenus des matériaux et des contraintes de fabrication …) mais c’est vraiment un basique pour un ortho, éduc ou intervenant qui débute.

En attendant, vous pouvez imprimer le pdf tout en bas de l’article afin de travailler les exercices disponibles sur ce site. 

Sur mon site, vous trouverez de nombreux PDFs à télécharger en rapport avec ces pingouins.
En tapant « pingouins » dans le moteur de recherche, vous tomberez sur d’autres articles avec des idées pour les utiliser : des patterns à reproduire, des algo, des séquences à mémoriser, etc, …

 

 

Des exemples d’exploitations en vrac …


Trier certaines couleurs parmi d’autres : prendre une seule couleur (mettre les bleus dans une boite) est en général facile pour les enfants mais lorsqu’il s’agit de mettre 2 voire plus de couleurs, c’est compliqué. Or, c’est importnat de pouvoir faire ca. Ci-dessous, les enfants trient les bleus, jaunes, rouges et verts dans la boite. Les autres doivent rester sur la table.

 

Reproduire un pattern :
Tout début pour ce petit bonhomme : mettre un pingouin vert dans chaque carré. Puis, dans un moule à muffins : mettre un jaune et un vert (il a un modèle d’une case avec un jaune et un vert pour repro visuelle)

   

Petits dénombrements ed 1 à 3 avec une boite à compter :


Peut être une image de jouet et texte  Peut être une image de jouet pour enfant et texte 

 

Complétion de pattern :
Parmi un ensemble de pingouin (ici : jaune orange et bleu) il doit compléter celui qui manque ( à chaque fois j’en ai ôté un seul)

    

 

Reproduction de séquences (ABLLS-R : B13) et suite en algorithmes (ABLLS-R : B22) :

 

Petits problèmes avec addition en ligne simple : 

 

 

Comparaison de quantités avec mon tapis de comparaison : 

On trie les 4 couleurs et on répond à la question visuelle : compléter la collection, ou mettre le bon signe ou mettre le bon picto couleurs, ou mettre le picto chiffre, etc, …

     

Mémoire visuelle avec output moteur :

Avec petit dispositif en bois avec 3 trous pour cet enfant en difficulté visuo-spatiale.

     

 

Jeux « les pingouins matheux », un gros PDF qui reprend toutes les bases mathématiques :

Il y aura un article entier réservé à ce PDF : travail de « tous, aucun, que de, ni ni pas de », puis travail du cardinal avec ces notions là, puis travail de l’ordinal, etc , …

 

 

Voici un PDF avec mes dessins de pingouins si vous n’avez pas encore la chance de l’avoir acquis : 😉

Publié dans Adaptations et critiques de jeux, Dénombrement, flexibilité cognitive, Fonctions exécutives, Maths, Planification

1, 2, 3 …comptez!

Encore une fois, différentes possibilités pour jouer à ce jeu de chez Gigamic. Il se joue de 1 à 4 joueurs.
Une version classique : on installe le jeu avec 3 démarrages de ligne, chaque joueur a 5 cartes en main (sur table en l’occurrence pour mes enfants), et la suite consiste à ordonner les cartes de 1 à 10.
Mais attention, il est interdit de mettre deux collections du même objet sur la même ligne. En général, j’explique cette contrainte une fois l’enfant à l’aise avec le reste du jeu. Ça ne pose pas de problème en soi car la notion de même/différent est une notion que je travaille en permanence, cependant, c’est quand même un paramètre supplémentaire que l’enfant devra prendre en compte.

1, 2, 3 … comptez! de Gigamic

Une originalité dans ce jeu: la pioche est en deux lots et le verso des cartes indique la valeur de la carte. On peut donc voir si l’enfant anticipe (ou non) sa future pioche en prenant une carte « utile » le cas échéant.

Publié dans Boîte d'enchainements, Dénombrement, Maths, Phonologie - lecture

Des chiffres arabes aux chiffres écrits.

Voici différents documents autour des chiffres et des nombres, en écriture chiffrée et en lettres. 

Tous les chiffres sont en « français » : 4 « ouvert » et 7 « avec une barre.

Ces petits exercices peuvent être utiles également lorsque la notion est acquise afin d’imprimer en 4 pages par feuille et de les mettre dans ce que j’appelle une boîte d’enchaînement.

Colorier les chiffres selon un codage :

Relier des écritures chiffrées ensemble.

Relier des chiffres et nombres en écritures chiffrées et en lettres.

Publié dans Apport théorique, Dénombrement, Maths

Le tout début début de la quantité …

Alors nous y voilà, comment commencer les maths? Comment faire pour que l’enfant commence à comprendre le concept même de quantité? Par quoi entamer cet enseignement?

Souvent, les parents qui viennent me consulter me disent fièrement que leur enfant compte jusqu’à 10 (ou 20 ou 30 …). Malheureusement, il s’agit d’enfants qui ne dénombrent pas mais qui « chantent comptine » jusqu’à un certain nombre.
Pensant bien faire, les parents, voire les éducateurs et autres accompagnants, pensent bien faire en stimulant l’enfant à dire 1,2,3,…dans des escaliers par exemple.
Au mieux, ça ne sert à rien et souvent, ça embrouille l’ordinal et le cardinal, ça « déforme » les prononciations (j’ai eu un enfant qui verbalisait « troique » pour « trois » à cause de la suite mal découpée de « undeutroiquatcinksice » pendant des mois).
Ces noms qu’on donne aux quantité servent à les désigner, mais enseignés trop tôt, c’est une suite de sons sans aucun sens.

 

—> Pour cette raison et bien d’autres, voilà comment j’introduis la quantité et les chiffres avec les enfants que je suis : 

Au tout départ, je fais de l’appariement visuel, « mettre ensemble les mêmes » : des images strictement identiques de « un » (constellations de dés avec un seul point au milieu d’un carré, par exemple) avec des images strictement identiques de « deux », et des images strictement identiques de « trois ». Je ne dis rien et n’exige rien, l’objectif étant purement de l’appariement visuel.

Les images de constellations bleues que j’utilise sont extraites du site ici : merci Le Jardin D’Alysse.

Simple tri visuel de 1/2/3 dans des boites différentes.

 

Puis ce même tri va être accompagné par MA verbalisation DU TOUT : de « un », « deux » ou « trois » pendant que l’enfant fait son petit tri visuel. Rapidement, normalement, l’enfant va également se mettre à associer oralement. J’estompe ensuite mes verbalisations. 

Il s’agit donc de dire si c’est 1, 2 ou 3 éléments, sans compter un par un. NE JAMAIS égrainer « un, deux, trois, il y en a trois!! »
D’expérience, mes enfants acquièrent plus rapidement et surtout sans s’emmêler les pinceaux quand je commence avec le subitizing.

J’ai connu tellement d’enfants TSA traumatisés, y compris des « grands », par les mathématiques que maintenant, lorsque j’ai un tout petit, je me dépêche de travailler ça à ma façon avant que d’autres personnes ne déforment involontairement leur conscience intrinsèque de la quantité (un bébé a déjà une conscience du nombre!)

Ensuite, on va pouvoir introduire des variations, par exemple, introduire des constellations de couleurs. ATTENTION, cela ne sera possible que si l’enfant a une bonne flexibilité mentale. Pourquoi?
Regardons dans l’exemple ci-dessous, quel va être le risque d’erreur pour la carte à placer (le 3 points jaunes) ?

 

Évidemment, l’enfant va être tenté de le mettre sur le 2 car le dernier 2 non recouvert est jaune. Son cerveau va devoir s’affranchir de ça pour pouvoir poser le « 3 points jaunes » sur le « 3 points bleus » : cela s’appelle inhiber la couleur.
Pour pouvoir faire ça, l’enfant devra avoir pour pré-requis la capacité à trier des items avec différents critères, par exemple, trier des items soit par couleur, soit par forme (avec par exemple un matériel de : 1 carré, 1 cercle, 1 triangle rouge, et 1 carré, 1 cercle et 1 triangle bleu)

 

J’ai dessiné 4 pages de constellations de dé et d’écritures chiffrées afin de pouvoir faire plein d’activités autour : les trier par couleur, par quantité, par écriture chiffrée VS constellation, les mettre en correspondance, … bref : amusez-vous ! Vous pouvez également jouer à Grab Game si vous avez un dé ! 
ATTENTION : Si vous imprimez en l’état, les cartes mesureront environ 6 cm. Vous pouvez les imprimer en grand mais aussi choisir l’option « pages par feuille », voire plus selon le format désiré. 

Afin de faire du tri, vous trouverez dans l’article « Caillou » des petits chats à trier :

Tri avec 1 assis ou 2 chats assis : ce sont les mêmes chats.
Première étape : tri avec 1 assis ou 2 chats assis : ce sont les mêmes chats.
Deuxième étape : tri avec 1 debout ou 2 chats debout ou 3 chats debout : ce sont les mêmes chats mais la quantité est de 1 à 3.
Deuxième étape : tri avec 1 debout ou 2 chats debout ou 3 chats debout : ce sont les mêmes chats mais la quantité est de 1 à 3.
Troisième étape : on mélange tous les chats : debout et assis et de 1 à 3. 
La difficulté va être la tentation pour l'enfant de trier les chats par "chats assis" VS 'chats debout".
Troisième étape : on mélange tous les chats : debout et assis et de 1 à 3. La difficulté va être la tentation pour l’enfant de trier les chats par « chats assis » VS ‘chats debout ».

Voici un document à imprimer, plastifier et velcroter :

Voici un support d’automne, avec des marrons : 

Les conseils pour exploiter ce document sont dans le PDF.
Il s’agit d’un support avec les quantités de 1 à 4 inclus, crée spécifiquement pour aller dans une Boite à compter mais qui peut évidemment être utilisé sans.
Ce document permet de travailler avec :
– des constellations de dé
– des collections de marrons déjà formées, (collections toutes différentes pour éviter de se baser sur la répartition des éléments dans la case et de bien se baser sur la quantité!)
– des écritures chiffrées (avec des polices différentes pour généraliser la reconnaissance des chiffres)
– des « vrais » marrons, ramassés au pied d’un arbre  🙂

Avec ces éléments, vous pouvez ensuite tout mixer dans tous les sens, comme sur les exemples ci-après :

   

   

Bref, une fois cet appariement maîtrisé, je commence à introduire des variantes en augmentant jusqu’à 6 par exemple, mais toujours en collections organisées pour l’instant. 

En parallèle, j’introduis le début du tri de collections désorganisées sur les petites quantités bien maîtrisées : de 1 à 3.
Comment procéder? Lorsqu’on veut dénombrer des collections désorganisées, instinctivement, nous tentons de « recréer mentalement les structures organisées » que nous connaissons. Pour induire cette stratégie, j’avais crée un support que j’avais appelé « tempête sur les constellations, qui sont en fait des « constellations légèrement désorganisées ». Voici un extrait visuel :

   

Il s’agit de petites collections (de 1 à 6) de constellation-dés dont les points sont légèrement décalés. Je demande aux enfants de les trier visuellement, puis de les associer, puis nommer, etc, … bref de les manipuler. J’ignore si finalement ils utilisent cette stratégie de « redresser » la constellation-dé connue, mais dans le doute, au pire, ils généralisent et sont contraints à tolérer la constellation « mal rangée » (ce qui peut poser problème avec certains enfants).

Dans l’enseignement des mathématiques, ATTENTION à la précision de nos gestes quand on travaille avec un enfant !!

Souvent, on amène les enfants à confondre l’ordinal et le cardinal. Chez les enfants neurotypiques, le problème sera rapidement dépassé mais pour les enfants avec des troubles de l’apprentissage, cela peut avoir de lourdes répercussions.

Voici deux dessins pour vous expliquer clairement … lequel représente 4?

2860F8F7-A61B-4379-9EF8-A63ED3D55CE2
0C8BB682-6447-488D-9ACB-5AD2B3FA8B67

Et oui! seul le second dessin représente 4, le premier représente « quatrième doigt » et non « quatre doigts ».

On peut engendrer des erreurs également lorsqu’on dénombre des objets, ne serait-ce que dans nos mouvements lors de l’enseignement :
Ainsi, pendant le « comptage-dénombrement », il faut être vigilant en déplaçant les objets :
                     1- On déplace un objet et on dit « un » quand il est posé sur la table.
              2- On prend le deuxième objet et on dit 2 lorsque cet objet est avec le premier et non lorsqu’on prend l’objet en question! 
Ça paraît évident mais c’est une erreur que j’observe fréquemment avec les enseignants ou les éducateurs.
Lorsqu’on travaille avec des enfants qui ont une exigence de précision, comme avec les personnes avec autisme, il est encore plus important de ne pas faire ce type d’approximations et d’une manière générale de réfléchir au moindre geste …

Prérequis à ces petits exos de préquantités :
– savoir associer des mêmes
– savoir associer des semblables non-identiques
– et perso, depuis quelques années, je travaille la distinction entre « beaucoup » et « peu » avant même ces exercices de discriminations de quantités. Les quantités répondant finalement à une précision de « combien beaucoup? » et « combien un peu », ça me paraît plus logique de l’aborder dans cet ordre.

 

Vous trouverez de nombreux articles sur les quantités sur ce site, et notamment des quantités à relier comme ci-dessous:
Si votre élève ne sait pas relier des éléments, un article est dédié ici.

Publié dans Adaptations et critiques de jeux, Calcul, Dénombrement, Matériel générique, Maths

Outil pratique pour les mathématiques : le Connecting Ten-Frame Trays

 

Pour les non-anglophones, il s’agit d’un produit de chez Learning Resources : des « plateaux de 10 cases raccordables ».
Ce sont des plateaux avec des séparations en relief, il y a 10 plateaux de 10 cases et 5 demi-plateaux de 5 cases, tous imbricables.
Il y a un 150  jetons bicolores, que l’on peut retourner avec une face bleue et une verte, ce qui est bien pratique.

Personnellement, je m’en sers beaucoup avec les enfants car quelque soit leur niveau, il y a toujours quelque chose à faire!

Avec les petits, on peut tout simplement : leur faire placer un jeton par case pour la manipulation, les faire reproduire une séquence d’alternances bleu-vert en terme à terme, on peut coller des gommettes vertes et bleues sur un dé et piocher tour à tour la couleur indiquée, et avec des plus grands, on peut commencer à jouer avec les quantités.

Je trouve qu’à l’instar des Picbilles, ce support est bien pratique pour acquérir/généraliser la notion de dizaine. 

Personnellement, lorsqu’il y a 10 jetons verts, je leur fais retourner tous les jetons pour les mettre coté bleu et « 10 jetons » devient  » une dizaine ».
J’ai fabriqué des « plateaux de 10 » plastifiés de façon à gagner du temps et surtout à faire comprendre à l’enfant que « dix » devient un « tout » et qu’on peut le prendre en une seule fois (contrairement à 10 jetons qui sont plus difficiles à prendre en « un coup ») et que l’on appelle cela « une dizaine ».

Ces planches de 10 plastifiées permettent de surcompter plus facilement : « il y a 10 … (puis on prend des jetons verts un par un 🙂 11, 12 : il y a 12 jetons! »

Des plaquettes de 10 supplémentaires permettent de monter au delà de 100 et surtout, permet de concevoir la dizaine comme étant « 1 » et non « 10 ».

Sur le même principe, de façon à surcompter puis à multiplier, j’ai fait des « barrettes de 5 » (pour compter de 5 en 5 par exemple) et des « barrettes de 2 » pour compter de 2 en 2 (pour ces quantités, j’ai gardé la couleur verte, car ce n’est pas « une dizaine »).
Cette configuration prépare également au concept des billets et à la monnaie.


Ce support permet de comprendre plus visuellement la notion d’addition : 5 bleus + 3 verts = 8 jetons. On peut se servir également de jetons d’autres couleurs pour des additions à plus de 2 termes.

Plaquettes de 5 et de 2 complémentaires pour dénombrer de 2 en 2 ou de 5 en 5 ou surcompter.


Beaucoup d’activités sont possibles grâce à cet outil : donner à l’enfant des petites étiquettes avec un chiffre arabe et l’enfant doit mettre la bonne quantité, ou encore, on lui propose une quantité et il doit attribuer la bonne étiquette, etc, … 

Pour moi, c’est vraiment un basique pour mes 2 ans à 15 ans ! 😉  (environ 30€)

 

Si vous voulez les quantités en chiffres arabes et les plaquettes scannées pour surcompter, c’est ici : support_nombres_ten-frame_10